Sony Pictures Imageworks's Lighting Model Integration Report 2020/07/10

SQUARE ENIX CO., LTD. Advanced Technology Division Mizokuchi Tomohiro Vongsay Kitti

©2020 SQUARE ENIX CO., LTD. All Rights Reserved.

Agenda

- Introduction
- Goals
- Energy Conservation
- Environment Lighting
- Optimization
- Results

SQUARE ENIX

• Future Work

TECHNOLOGY

- We started to integrate the Sony Pictures Imageworks lighting model.
 - Revisiting Physically Based Shading at Imageworks [Kulla 2017].

© Pros

- Perfect conservation of specular energy.
- Perfect conservation of specular and diffuse energy for dielectrics.

Cons

SQUARE ENIX

- Energy is not conserved for semiconductor materials.
- No information on how to implement environment lighting.

Goals

- Energy conservation for semiconductors.
- Real-time rendering of environment lighting.
 - Based on Split Sum Integral [Karis 2013].
- Approximate the LUTs (Look Up Table) with some basis functions to reduce their size.

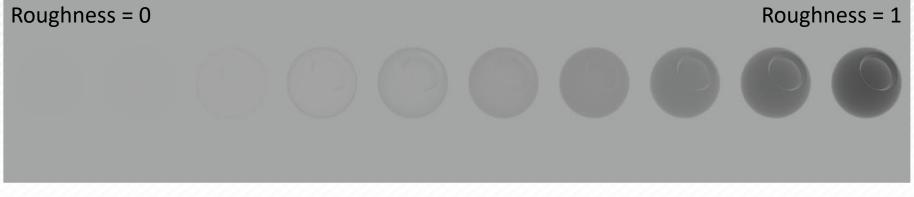
Sony Pictures Imageworks

Ours

ENERGY CONSERVATION

Energy Conservation - Imageworks

- Specular Term
 - Normal distribution is GGX and height-correlated masking & shadowing.
 - The specular assume single-scattering, becoming darker for higher roughness values.
- Matte Term
 - Kelemen et al model is used to conserve energy [Kelemen 2001].
 - Specular is rendered with energy loss.
 - That energy loss is compensated for with Lambertian diffuse models.
- Diffuse Term
 - Kelemen et al model is also used for the diffuse term.
 - Diffuse lighting is rendered with the absorbed energy of specular and matte.
 - Energy conservation can only be guaranteed for dielectric materials.


Energy - Specular Term

$$E(\mu_o) = \int_0^{2\pi} \int_0^1 f'(\mu_o, \mu_i, \phi) \mu_i d\mu_i d\phi.$$

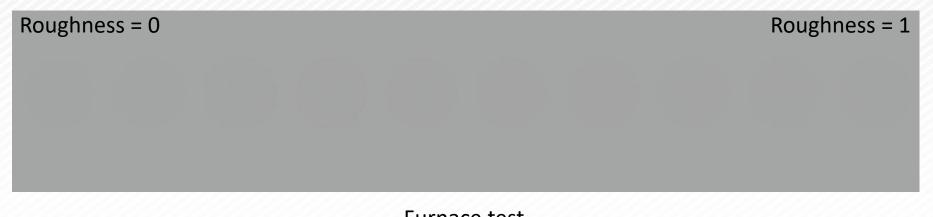
Microfacet Specular BRDF

- $E(\mu_o)$ is referred to as the directional albedo.
- Greek letter μ is $cos\theta$ term.

SQUARE ENIX

• Furnace test was used to visualize lost energy.

Energy - Matte Term


SQUARE ENIX

$$f'_{ms}(\mu_o,\mu_i) = \frac{\left(1 - E(\mu_o)\right)\left(1 - E(\mu_i)\right)}{\pi(1 - E_{avg})}, E_{avg} = 2\int_0^1 E(\mu)\mu d\mu.$$

• As introduced by Kelemen et al.

TECHNOLOGY

• By adding the new BRDF lobe f'_{ms} , energy is perfectly conserved.

Fresnel

- For dielectric materials, some energy is absorbed.
- Multi-scattering lights absorption needs to be considered.
 - Can be roughly modeled by averaging Fresnel with a cosine weight [Jakob 2014].

$$-F_{avg}=2\int_0^1 F(\mu)\mu d\mu.$$

$$- F_{ms} = \frac{(F_{avg}E_{avg})}{1 - F_{avg}(1 - E_{avg})}.$$

- F_{ms} is multiplied by the matte term.
- Our integration used Artist Friendly Fresnel [Gulbrandsen 2014] as F.
 - Artists can tweak the edge color with **fresnel specular (f0)** and **edgetint**.

Energy - Diffuse Term

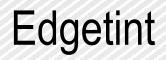
- Simply adding the diffuse term will not conserve energy.
- Kelemen et al's approach is also used for the diffuse term.
- The amount of energy depends on the specular and matte terms.
 - Some energy is absorbed by the specular and matte terms.
- Diffuse term is only considered for dielectric materials.
 - Edgetint is fixed at 0.

SOUARE ENIX

• So if the material is a semiconductor, the energy will not be conserved. Roughness = 0 f0 = 0.5, edgetint = 1, albedo = 1 Roughness = 1

Dependency

- *E*: directional albedo of specular.
 - Dependency: μ_o , roughness.
- E_{avg} : averaged directional albedo of specular.
 - Dependency: roughness.
- E': absorbed energy by specular and matte terms (edgetint=0).
 Dependency: μ_o, roughness, fresnel specular.
- E'_{avg} : specular and matte terms absorbed energy average.
 - Dependency: roughness, fresnel specular



Sony Pictures Imageworks

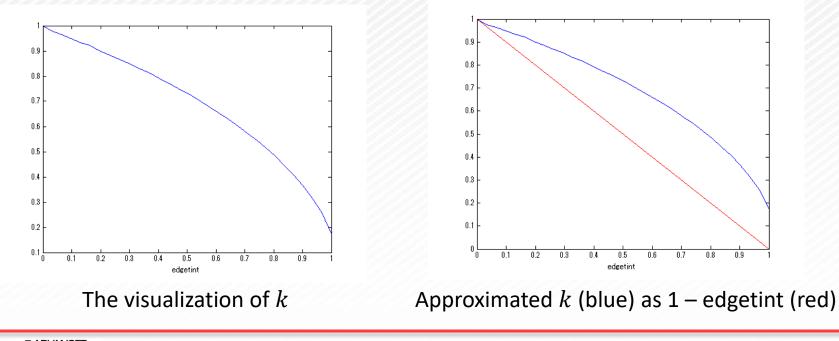
Ours

ENERGY CONSERVATION

- Diffuse term is only considered for dielectric materials.
 - Edgetint is fixed at 0.
- If the material is close to a semiconductor, the energy will not be conserved.
- Edgetint is close to 1 for real world conductors.
- Edgetint is close to 0 for real world dielectrics.
- We conserve energy by scaling the diffuse term for dielectrics.
 The scale will determine edgetint value.

Scaling Parameter

- We determine the scale required to conserve energy for semiconductors.
- 1. Calculate the absorbed energy E'' of specular and matte terms.
 - Edgetint isn't fixed.
 - Dependency: μ_o , roughness, fresnel specular, edgetint.
- 2. Calculate the parameter k that is the ratio of E'' and E'.


$$-k = \frac{E''}{E'}$$

- The dimension of k is 4 (μ_o , roughness, fresnel specular, edgetint).
- 3. Minimize k into a dimension of 3 (μ_o , roughness, fresnel specular).
- 4. Finally *k* end up as a 1D LUT depending on edgetint.

Scaling Parameter

SOUARE ENIX

- Energy is conserved by multiplying the diffuse term by k.
- *k* is the only condition to preserve energy conservation.
- We tried to fit the 1D LUT at first but the calculation costs seemed excessive so we decided to approximate *k* as 1-edgetint.

Energy Conservation

- Sony Pictures Imageworks: Energy is not conserved when roughness is close to 0.
- Ours: Energy is conserved for any roughness values.

Roughr	Energy visualization (f0 = 0.5, edgetint = 1, albedo = 1)								Roughness = 1			
Rendering	<u></u>	2	2		<u></u>		9	9	9	9	<u></u>	
Furnace Test				\mathcal{Q}	Ω							
Sony Pictures Imageworks												
Rendering		9	9	9	<u></u>	2	2	2	2	2	e	
Furnace Test							0					
Ours												
COLOREENIX CO., LTD. All Rights Reserved.												16

Importance Sampling Split Integral ENVIRONMENT LIGHTING

Importance Sampling

- Importance sampling is used for offline rendering.
 - Can sample the radiance from a cube map against a BRDF lobe.

[©] Pros

- Integration is very simple.
- Can do the fast rendering with filtered importance sampling [Krivanek 2008].

⊗ Cons

• Calculation cost is very expensive.

Split Integral (Unreal)

 This is often used for environment lighting in games. - Real Shading in Unreal Engine 4 [Karis 2014].

•
$$\int_{\Omega} L_{i}(\mathbf{l}) f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} = \frac{\int_{\Omega} L_{i}(\mathbf{l}) f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}}{\int_{\Omega} f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}} \int_{\Omega} f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}.$$
Fresnel
Fresnel
F(|\mathbf{n} \cdot \mathbf{v}|) \int_{\Omega} L_{i}(\mathbf{l}) f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}.

v: view direction **n**: normal

 $F(|\mathbf{n} \cdot \mathbf{v}|) \int_{\Omega} \hat{f}(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} \int_{\Omega} f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}.$ **Pre-filtered cube map**

Directional albedo

 Ω : hemisphere

SQUARE ENIX

- Schlick Fresnel [Schlick 1994] is used as the fresnel term F. ٠
- This isn't directly applicable to our lighting model. •

Our Directional Albedo

Our Pre-filtered Cube Map

SPLIT INTEGRAL

Directional Albedo

$\int_{\Omega} f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} = E_{specular} + E_{matte} + albedo * E_{diffuse}.$

- *E*_{specular} : Specular term's directional albedo.
- E_{matte} : Matte term's directional albedo.
- $E_{diffuse}$: Diffuse term's directional albedo.

$$E_{specular} = \int_{\Omega} f(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}$$

$$\approx F(\mathbf{v}, \mathbf{d}) \int_{\Omega} f'(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}$$

$$\approx F(\mathbf{v}, \mathbf{d}) E(\mu_o).$$

- *d*: Dominant direction of the reflection lobe.
- We extract from the integral F to reduce the dimension of the LUT.

E_{matte}

SQUARE ENIX

$$E_{matte} = F_{ms} \int_{\Omega} f'_{ms}(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l}$$
$$= F_{ms} \left(1 - \int_{\Omega} f'(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} \right)$$
$$= F_{ms} \left(1 - E_s(\mu_o) \right).$$

• *E* baked as 2D LUT (*roughness*, μ_o).

TECHNOLOGY DIVISION

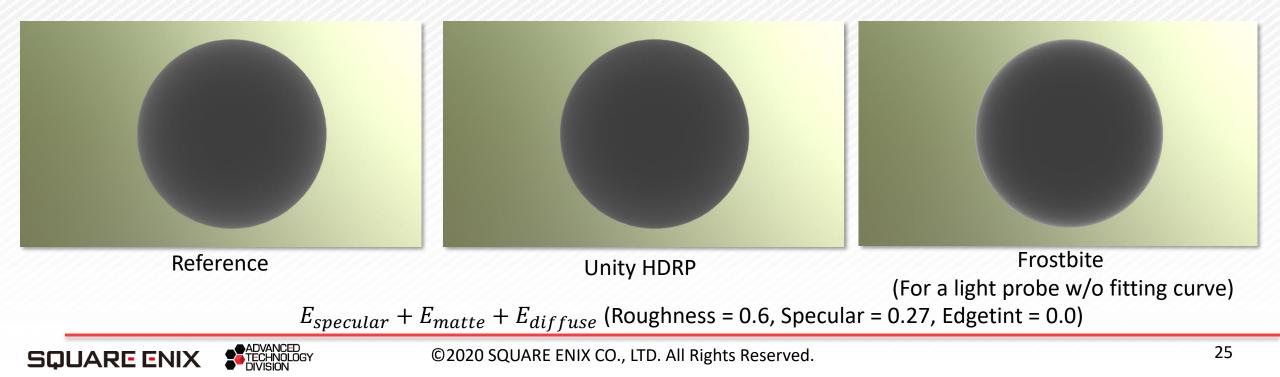
• E_{avg} approximated using LMS (Least Mean Squares).

Ediffuse

SQUARE ENIX

$$\begin{aligned} E_{diffuse} &= \int_{\Omega} f_{diffuse}(\mathbf{l}, \mathbf{v}, \mathbf{n}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} \\ &= 1 - \int_{\Omega} \left(F(\mathbf{v}, d) f'(\mathbf{l}, \mathbf{v}, \mathbf{n}) + F_{ms} f_{ms}(\mathbf{l}, \mathbf{v}, \mathbf{n}) \right) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} \\ &\approx (1 - edgetint) \left(1 - \int_{\Omega} (F f' + F_{ms} f_{ms}) |\mathbf{n} \cdot \mathbf{l}| d\mathbf{l} \right) \end{aligned}$$

$$\approx (1 - edgetint)(1 - E'(\mu_o)).$$

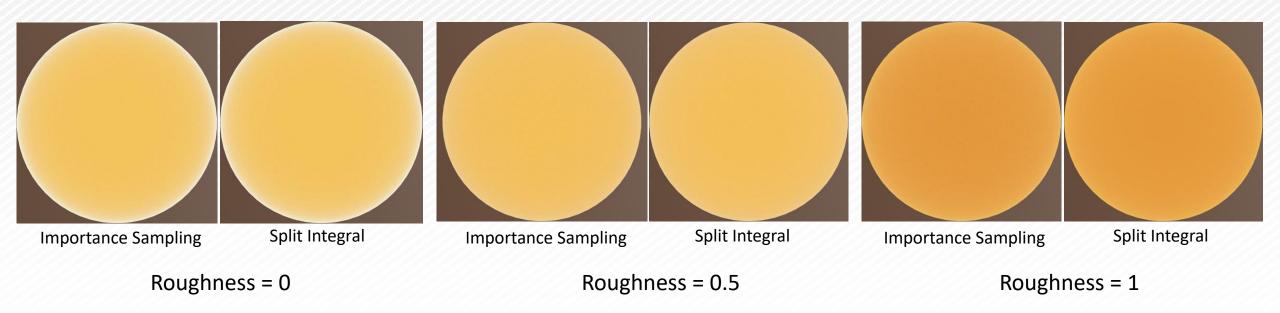

• $f_{diffuse}$ is a lobe based on Kelemen et al.

ADVANCED TECHNOLOGY DIVISION

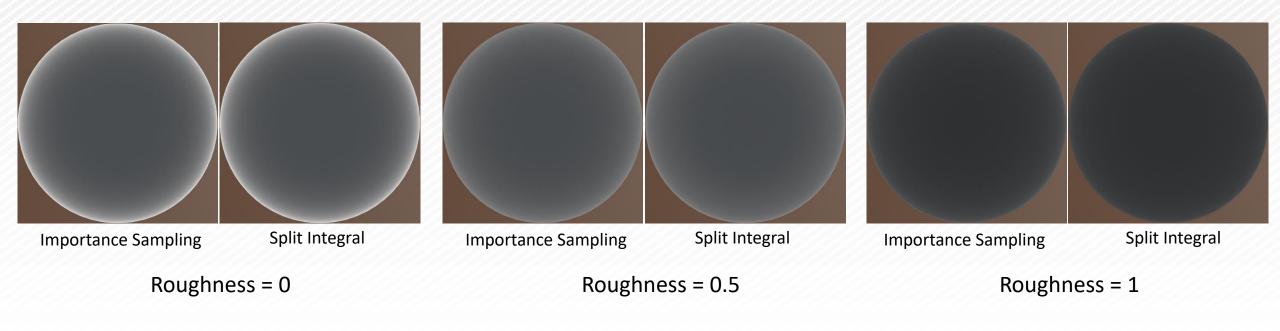
- E' baked as 3D LUT (roughness, $v \cdot n$, specular).
- E'_{avg} baked as 2D LUT (roughness , specular).

Fresnel Term $(F(\mathbf{v}, \mathbf{d}))$

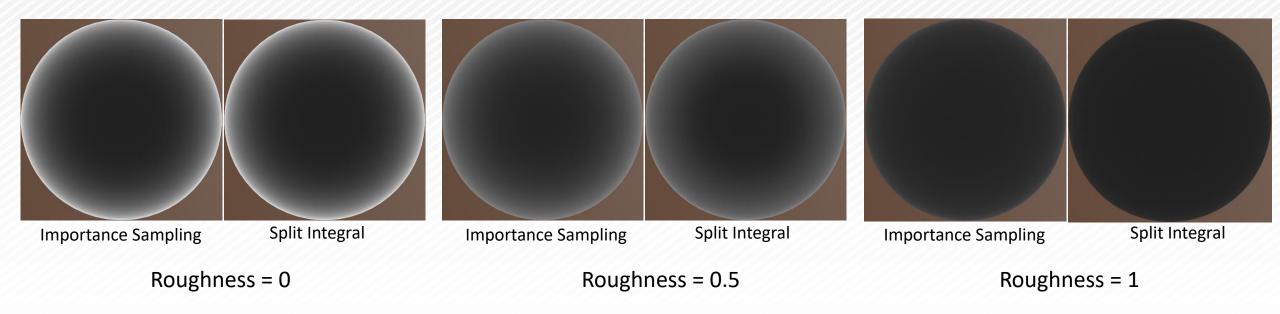
- We tested $F(\mathbf{v}, \mathbf{d})$ with the dominant directions for further improvements.
 - Moving Frostbite to Physically Based Rendering 3.0 [Lagarde 2014].
 - Unity Scriptable Render Pipeline [Lagarde 2018].
- We decided to use the approach of Unity Scriptable Render Pipeline.



- E : R8_UNORM, Resolution = 32*32, Data Size = 1 Kbytes.
- E' : R8_UNORM, Resolution = 32*32*32, Data Size = 32 Kbytes.
- E'_{avg} : R8_UNORM, Resolution = 32*32, Data Size = 1 Kbytes.


Result: Directional Albedo

- Material: Gold (Au).
 - Fresnel specular: 245, 197, 94.
 - Edgetint: 254, 250, 186.
 - Albedo: 0, 0, 0.

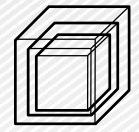

Result: Directional Albedo

- Material: Silicon Carbide.
 - Fresnel specular: 75, 78, 81.
 - Edgetint: 1, 4, 9.
 - Albedo: 0, 0, 0.

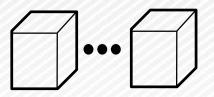
Result: Directional Albedo

- Material: Glass.
 - Fresnel specular: 13, 13, 13.
 - Edgetint: 0, 0, 0.
 - Albedo: 29, 29, 29.

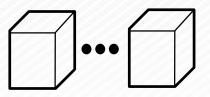
Our Directional Albedo Our Pre-filtered Cube Map SPLIT INTEGRAL


Pre-filtered Cube Map

- Our pre-filtering is based on the Split Sum Integral [Karis 2013].
- Output is pre-filtered cube maps per lighting term.
 - Specular: created using $f'(\mathbf{l}, \mathbf{v}, \mathbf{n})$ weight.
 - Matte: created using $f'_{ms}(\mathbf{l}, \mathbf{v}, \mathbf{n})$ weight.
 - Diffuse: created using $f_{diffuse}$ weight.




Data Structure (Specular)


- Specular
 - Mip level represents roughness.
 - Mip level = $\sqrt{roughness}$ * mipCount.
 - The resolution is higher because of high frequency.
- Matte
 - 1D Array index is based on roughness.
 - The resolution is lower because of the low frequency.
- Diffuse
 - 2D Array index is based on roughness, specular.
 - The resolution is lower because of the low frequency.

Cube map with mip

Cube map array

OPTIMIZATION

First Implementation of The Pre-filtered Cube Map

- Specular Term, Cube map with mipmaps.
 - Format = BC6H_UF16.
 - Resolution = 512*512*6 (faces) with mipmaps.
- Matte Term, Cube map array.
 - Format = BC6H_UF16.
 - Resolution = 64*64*6 (faces).
 - Index = $\sqrt{roughness} * 8$. (: 8 = The number of arrays)
- Diffuse Term, Cube map array.
 - Format = BC6H_UF16.

SQUARE ENIX

- Resolution = 64*64*6 (faces).
- Index = $(\sqrt{roughness}, \text{specular})^*(4, 4)$. (: (4, 4) = The number of 2D arrays)

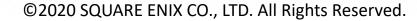
Data Compression

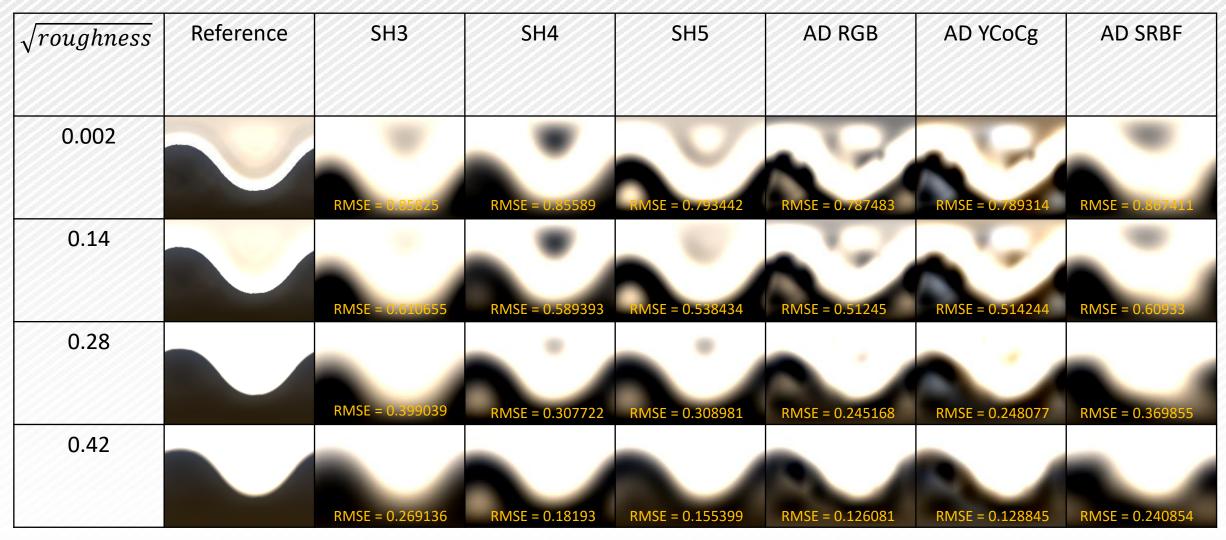
- There are a lot of pre-filtered cube maps.
 - Even compressed as BC6H, it is too much data for real-time games.
- Matte term and diffuse term can be approximated with basis functions.
 - Because the cube maps are low frequency.
- We saved on data size by approximating using various basis functions.
 - Spherical Harmonics (SH): SH3, SH4, SH5.
 - Ambient Dice (AD): RGB, YCoCg, SRBF.
- Final data size.
 - Matte term: 864bytes ~ 2.4Kbytes.
 - Diffuse term: 432bytes ~ 1.2Kbytes.
- Limitation

SQUARE ENIX

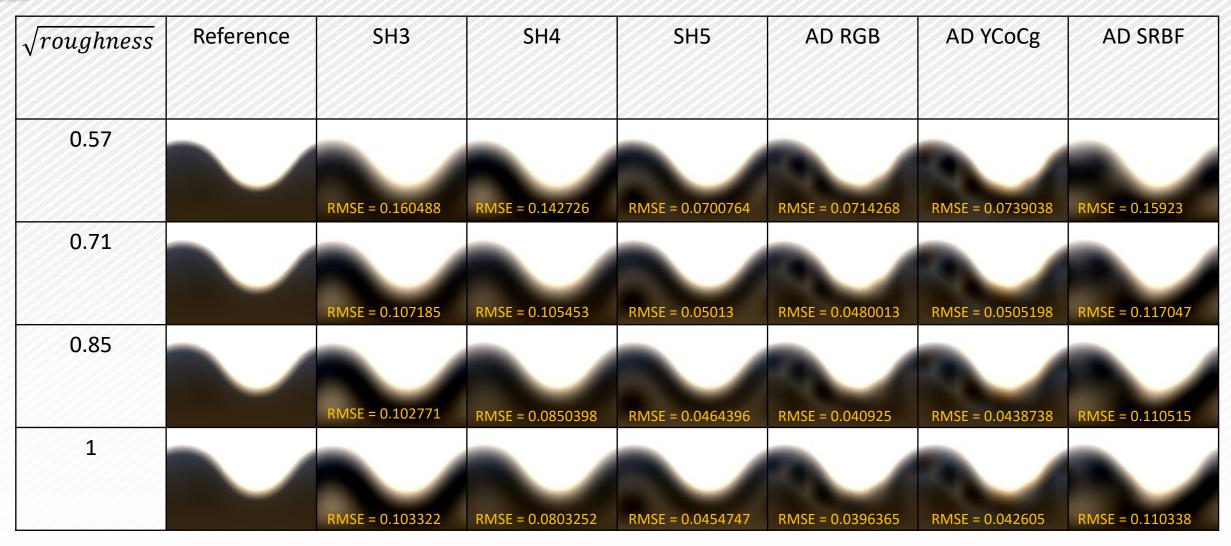
Depending on cube maps, there might be negative values.

Environment map


Experiment1

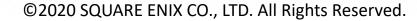

Experiment2

TECHNOLOGY


PRE-FILTERED CUBE MAP (MATTE)

SQUARE ENIX

Environment map


Experiment 1

Experiment 2

TECHNOLOGY

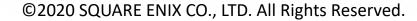
PRE-FILTERED CUBE MAP (DIFFUSE)

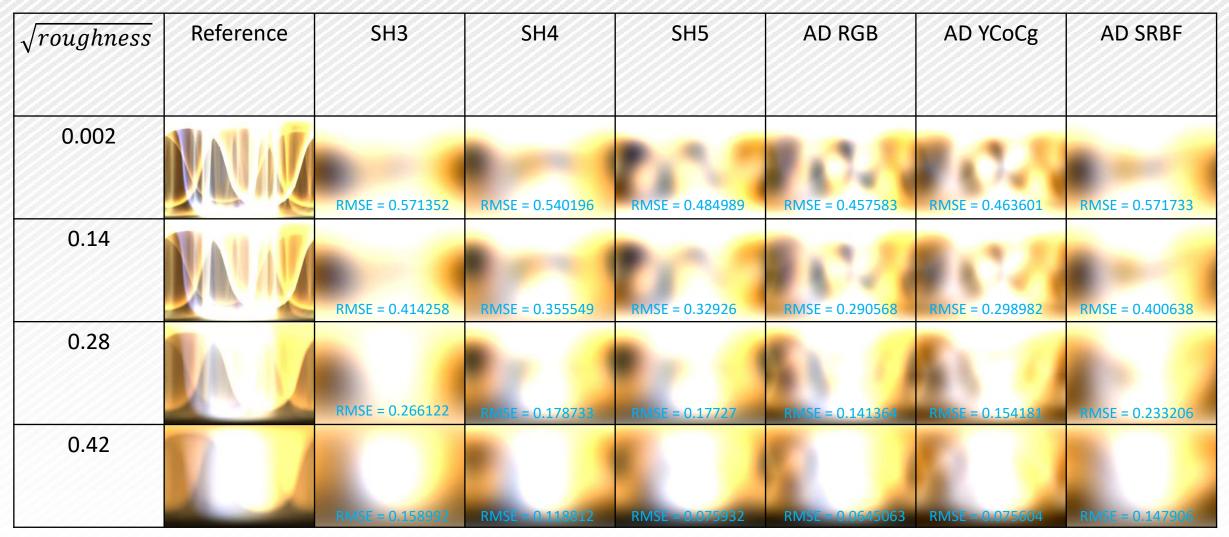
specular	√roughness	Reference	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
0	0		RMSE = 0.105515		RMSE = 0.0498573		RMSE = 0.0480222	
0	0.33		RMSE = 0.105515		RMSE = 0.0395638			RMSE = 0.113141
0	0.66		2		RMSE = 0.0408226			
0	1				RMSE = 0.0428686			

specular	$\sqrt{roughness}$	Reference	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
0.33	0		RMSE = 0.0954032	RMSE = 0.0953287	RMSE = 0.0479248	RMSE = 0.0504581	RMSE = 0.0524027	RMSE = 0.105107
0.33	0.33		RMSE = 0.0901046	RMSE = 0.0899666	RMSE = 0.0446922	RMSE = 0.0476246	RMSE = 0.0494089	RMSE = 0.0997573
0.33	0.66		RMSE = 0.0895111	RMSE = 0.0893604	RMSE = 0.0435516	RMSE = 0.0466836	RMSE = 0.0485574	RMSE = 0.0992356
0.33	1				RMSE = 0.0410208		RMSE = 0.0462362	

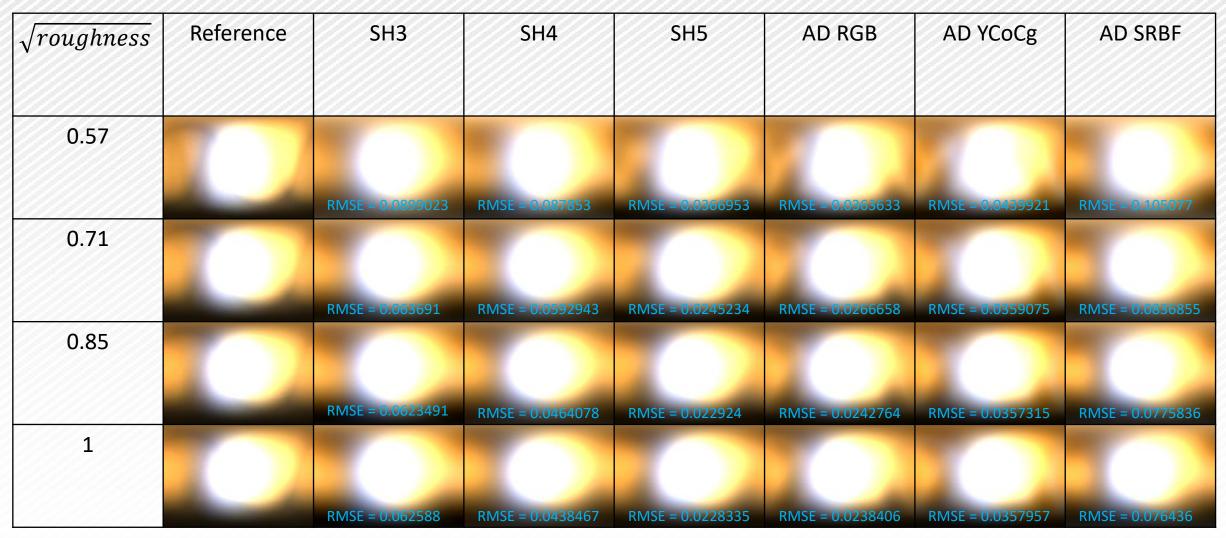
specular	$\sqrt{roughness}$	Reference	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
0.66	0		RMSE = 0.10529	RMSE = 0.0968659	RMSE = 0.0697763	RMSE = 0.063791	RMSE = 0.064946	RMSE = 0.106696
0.66	0.33		RMSE = 0.106057	RMSE = 0.0978462	RMSE = 0.0660651	RMSE = 0.0615903	RMSE = 0.063006	RMSE = 0.108287
0.66	0.66		RMSE = 0.0947128	RMSE = 0.0935872	RMSE = 0.0463616	RMSE = 0.0491796	RMSE = 0.0509797	RMSE = 0.102929
0.66	1		RMSE = 0.0848036		2		RMSE = 0.0442431	

specular	$\sqrt{roughness}$	Reference	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
1	0							
1	0.33		RMSE = 0.167869	RMSE = 0.145584	RMSE = 0.145624	RMSE = 0.122226	RMSE = 0.12306	RMSE = 0.158254
1	0.66		RMSE = 0.147246	RMSE = 0.120542	RMSE = 0.111485	RMSE = 0.0889171	RMSE = 0.0899217	RMSE = 0.13751
1	1		RMSE = 0.0971064	RMSE = 0.0930915	RMSE = 0.0516532	RMSE = 0.0523366	RMSE = 0.0537137	RMSE = 0.102814
	I		RMSE = 0.0830927	RMSE = 0.0817969	RMSE = 0.0397769	RMSE = 0.0431069	RMSE = 0.0450536	RMSE = 0.0940711





Environment map


Experiment 2 **PRE-FILTERED CUBE MAP (MATTE)**

Environment map

Experiment 2 **PRE-FILTERED CUBE MAP (DIFFUSE)**

specular	$\sqrt{roughness}$	Input	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
0	0							
			RMSE = 0.0633535	RMSE = 0.0543815	RMSE = 0.0242231	RMSE = 0.025832	RMSE = 0.0360711	RMSE = 0.0816929
0	0.33							
			RMSE = 0.0547206	RMSE = 0.0489502	RMSE = 0.0186972	RMSE = 0.0233424	RMSE = 0.0327869	RMSE = 0.0743957
0	0.66							
			RMSE = 0.0511797	RMSE = 0.0503344	RMSE = 0.0191675	RMSE = 0.0249864	RMSE = 0.0322751	RMSE = 0.0720122
0	1							
			RMSE = 0.0521126	RMSE = 0.0518774	RMSE = 0.0201597	RMSE = 0.0257969	RMSF = 0.0326087	RMSE = 0.0727254

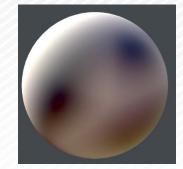
specular	$\sqrt{roughness}$	Input	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
0.33	0							
			RMSE = 0.0571573	RMSE = 0.0566709	RMSE = 0.0224117	RMSE = 0.0274131	RMSE = 0.0344798	RMSE = 0.0779214
0.33	0.33							
			RMSF = 0.0540253	RMSF = 0.0538879	RMSF = 0.0208884	RMSE = 0.0263596	RMSF = 0.0331682	RMSE = 0.0745169
0.33	0.66							
			RMSF = 0.0536121	RMSE - 0.053/815	RMSE - 0 0204528	RMSE = 0.0259924	RMSE - 0.0328962	RMSE - 0.07/117/
0.33	1			1113L - 0.0334813	100204328	10152 - 0.0255524		
				DMCE 0.0400502				
			RMSE = 0.0510283	RMSE = 0.0499593	RMSE = 0.0192056	RMSE = 0.0250309	RMSE = 0.0323406	RMSE = 0.071863

specular	$\sqrt{roughness}$	Input	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
0.66	0							
			RMSE = 0.0655546	RMSE = 0.0602326	RMSE = 0.034926	RMSE = 0.0347999	RMSE = 0.0395627	RMSE = 0.0787497
0.66	0.33							
			RMSE = 0.0650394	RMSE = 0.0605704	RMSE = 0.0320905	RMSE = 0.0331192	RMSE = 0.0382413	RMSE = 0.0792109
0.66	0.66							
			RMSE = 0.0564754	RMSF = 0.0564213	RMSF = 0.0218557	RMSE = 0.0270047	RMSF = 0.0335898	RMSF = 0.0762957
0.66	1							
			RMSE = 0.050936	RMSE = 0.0476247	RMSE = 0.0185262	RMSE = 0.0241725	RMSE = 0.0323597	RMSE = 0.0714479

specular	$\sqrt{roughness}$	Input	SH3	SH4	SH5	AD RGB	AD YCoCg	AD SRBF
1	0							
			RMSE = 0.11225	RMSE = 0.0842352	RMSE = 0.0839204	RMSE = 0.069644	RMSE = 0.0736219	RMSE = 0.10493
1	0.33							
			RMSE = 0.0938861	RMSE = 0.0719985	RMSE = 0.0578288	RMSE = 0.0485627	RMSE = 0.0536436	RMSE = 0.0938258
1	0.66							
			RMSE = 0.0584925	RMSE = 0.0570699	RMSE = 0.0248793	RMSE = 0.0286543	RMSE = 0.0345669	RMSE = 0.0760983
1	1							
			RMSE = 0.0499161	RMSE = 0.0483398	RMSE = 0.0186967	RMSE = 0.0245738	RMSE = 0.0320775	RMSE = 0.0707247

Conclusion

- Ambient Dice RGB, YCoCg.
 - © The quality is the same as SH4 or SH5 according to RMSE (Root Mean Square Deviation).
 - © High frequency cube map approximation is better than SH4 and SH5.
 - $\ensuremath{\boxdot}$ Artifacts appear around lower values areas.



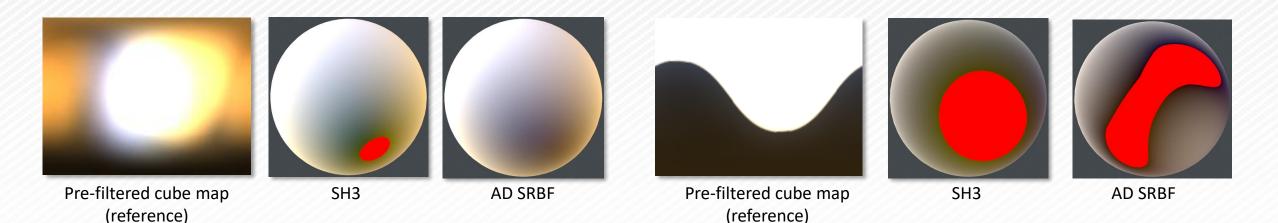
AD RGB

Pre-filtered cube map (AD RGB)

Rendered with sphere

Specific Artifacts

Pre-filtered Cube Map Approximation

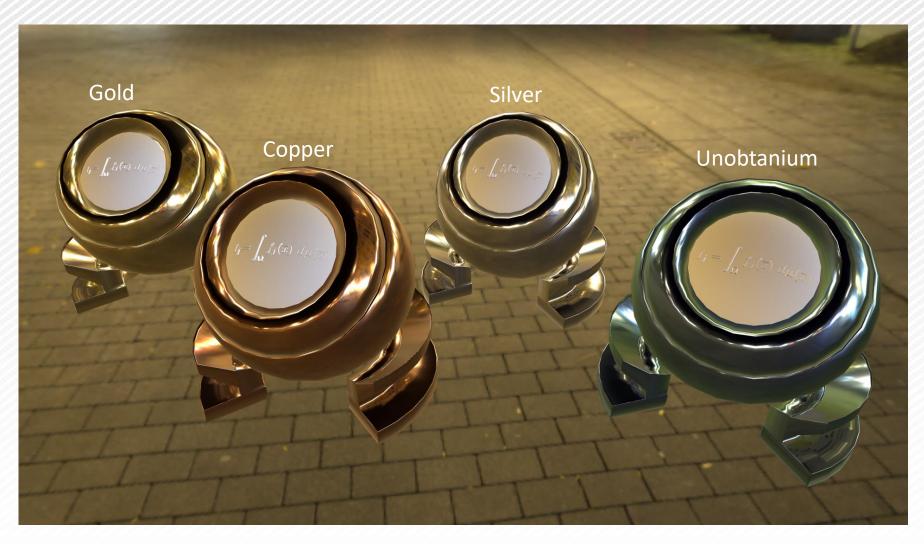


Conclusion

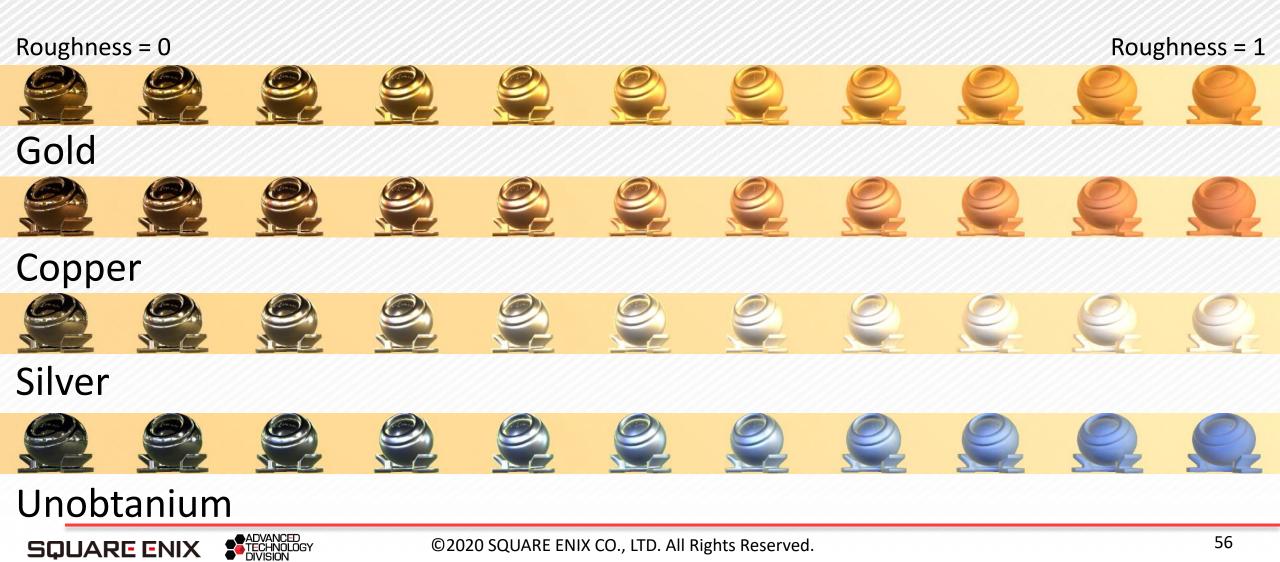
• Ambient Dice – SRBF.

The quality is the same as SH3 according to RMSE.
Depending on the input cube map, negative values might appear.

• We chose to use AD SRBF because of overall quality and stability.

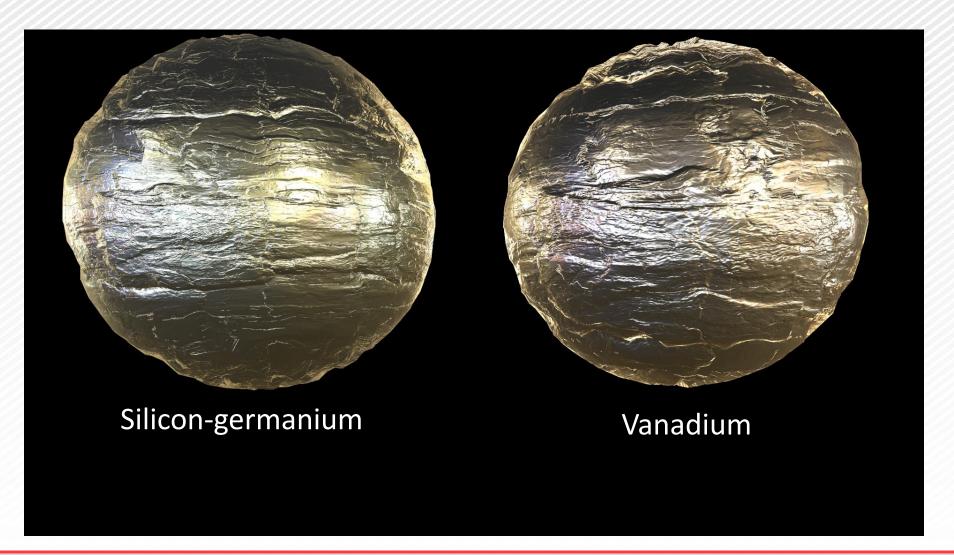

Visualization of Negative Value (Red term is negative)

RESULTS


Conductor (Fresnel f0 and edgetint from [Gulbrandsen 2014])

Conductor – roughness

SQUARE ENIX


Dielectric

ADVANCED TECHNOLOGY DIVISION

SQUARE ENIX

Semiconductor (Fresnel f0 and edgetint from RefractiveIndex.Info)

© 2020 SQUARE ENIX CO., LTD. All Rights Reserved.

TECHNOLOGY DIVISION

SQUARE ENIX

Future Work

- Add support for anisotropy.
- Resolve the negative value artifacts of AD SRBF.
- Measure the performance on consoles.

Acknowledgements

- Adelle Bueno
- Eduardo Mosena
- Yusuke Tokuyoshi

References

- 1. [Gulbrandsen 2014] Ole Gulbrandsen. Artist Friendly Metallic Fresnel.
- 2. [Iwanicki 2017] Michal Iwanicki and Peter-Pike Sloan. Ambient Dice.
- 3. [Jakob 2014] Wenzel Jakob, Eugene d'Eon, Otto Jakob and Steve Marschner. A Comprehensive Framework for Rendering Layered Materials.
- 4. [Karis 2013] Brian Karis. Real Shading in Unreal Engine 4.
- 5. [Kelemen 2001] Csaba Kelemen and Laszlo Szirmay-Kalos. A Microfacet Based Coupled Specular-Matte BRDF Model with Importance Sampling.
- 6. [Krivanek 2008] Jaroslav Krivanek and Mark Colbert. Real-time Shading with Filtered Importance Sampling.
- 7. [Kulla 2017] Christopher Kulla and Alejandro Conty. Revisiting Physically Based Shading at Imageworks.
- 8. [Lagarde 2014] Sebastien Lagarde and Charles de Rousiers. Moving Frostbite to Physically Based Rendering 3.0.
- 9. [Lagarde 2018] Sebastien Lagarde and Evgenii Golubev. The Road Toward Unified Rendering with Unity's High Definition Render Pipeline.
- 10. [Schlick 1994] Schlick, C., An Inexpensive BRDF Model for Physically-based Rendering.

Resources

Image:

p.7: Revisiting Physically Based Shading at Imageworks, 2017, pp12, <u>https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017 pbs imageworks slides v2.pdf</u>.
p.8: Revisiting Physically Based Shading at Imageworks, 2017, pp13, <u>https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017 pbs imageworks slides v2.pdf</u>.
p.10: Mori Knob, Yasutoshi Mori, <u>https://casual-effects.com/data/</u>, CC by 3.0.
p.36: HDRIHAVEN, delta_2_2k.hdr, <u>https://hdrihaven.com/hdri/?c=outdoor&h=delta_2</u>, CC by 0.0.
p.44: HDRIHAVEN, hansaplatz_2k.hdr, <u>https://hdrihaven.com/hdri/?c=outdoor&h=hansaplatz</u>, CC by 0.0.

Trademark:

-SONY PICTURES is a trademark or registered trademark of Sony Corporation.

